No-Code

Connect to enterprise-grade MCP servers instantly!Klavis MCP Servers - No Code CreationGet Started →

For Developer

Follow the instructions below to integrate Exa MCP server to your AI application using our API or SDK.

Prerequisites

1. Create an Exa MCP Server

Use the following endpoint to create a new remote Exa MCP server instance:

Request

from klavis import Klavis
from klavis.types import McpServerName

klavis_client = Klavis(api_key="<YOUR_API_KEY>")

# Create an Exa MCP server instance
exa_server = klavis_client.mcp_server.create_server_instance(
    server_name=McpServerName.EXA,
    user_id="<YOUR_USER_ID>",
    platform_name="<YOUR_PLATFORM_NAME>",
)

Response

{
  "serverUrl": "https://exa-mcp-server.klavis.ai/mcp/?instance_id=<instance-id>",
  "instanceId": "<instance-id>"
}
serverUrl specifies the endpoint of the Exa MCP server, which allows you to perform AI-powered semantic search, content retrieval, similarity discovery, and comprehensive research through the Exa Search API.
instanceId is used for authentication and identification of your server instance.

2. Configure Exa API Key

To use the Exa MCP Server, you need to configure it with your Exa API key. You can get your API key from the Exa AI website.

Setting up Exa API Key

curl --request POST \
  --url https://api.klavis.ai/mcp-server/instance/set-auth \
  --header 'Authorization: Bearer <YOUR_KLAVIS_API_KEY>' \
  --header 'Content-Type: application/json' \
  --data '{
  "instanceId": "<YOUR_INSTANCE_ID>",
  "authData": {
    "token": "<YOUR_EXA_API_KEY>"
  }
}'

Response

{
  "success": true,
  "message": "<string>"
}

Explore MCP Server Tools

For more details about tool input schema, use the list_tool API.